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General context overview, main motivation and use case

1. Hudge amount of data

> The carbon footprint and environmental impact of Al is not negligible: > Recent developments in 1A tend to worsen this impact: Our first objective: Recent studies report that training of NLP
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3. Computational
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» Yet environmental impact is not considered as valuable metric to evaluate performance of deep learning algorithms.

Life Cycle Analysis Asses energy consumption during training
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How to reduce the environnemental impact of Al ?

Next steps and bibliography
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