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Contributions Related work
> Generalize univariate two-sample linear rank statistics to the multivariate setting with generic feature space. > Linear rank statistics were initially introduced in semi/nonparametric univariate framework by [5], [4].
> Provide nonasymptotic theoretical guarantees on this collection of statistics, defined as R-processes, when indexed by > First generalization of the univariate Mann-Whitney-Wilcoxon rank statistic applied to hypothesis testing in [2].
classes of scoring functions. > Empirical risk minimization of bivariate loss function has been shown to be equivalent with empirical maximization of the
~ Apply to Bipartite Ranking by considering the R-processes as empirical performance criteria summarizing the ROC curve. R-statistic associated with ([1]).
Notations and Framework Definitions
> Let p € (0, 1) be the 'theoretical’ fraction of the first sample. For N > 1/p, n=|pN|and m=|[(1—-p)N| =N —n. The two-sample W s-ranking performance measure is defined by:
> Let two independent i.i.d. samples {X;}i<n, 1Y }i<m, drawn from G(dt), H(dt) respectively, defined on the sample Wy(s) = E[p(F,(s(X)))] , (4)

orobability space, valued in X, eg. X C RY, d € N*. Define the mixture c.d.f. by ' = pG + (1 — p)H.

> Let S = {s: X — R measurable} be the class scoring functions that maps observations into R. Suppose Sy C S has
finite VC-dimension V.

where we define by ¢ : |0, 1] — R the score-generating function and suppose to be fixed, nondecreasing and twice
continuously differentiable. The empirical counterpart based on the two samples {X;};<n, {Y}i<m is:

> Let M > 0. For all s € Sy, the random variables s(X) and s(Y) are continuous, with density functions that are twice Z 5 (Rank s(X ))) | (5)
differentiable and have Sobolev YW?>-norms. The image distributions are denoted by G, and H.. N +1
> Denote by W the likelihood ratio defined by W : x € & — dG//dH () . where Rank(t) = > i I{s(X;) <t} + >0 [{s(Y;) < t} NFS’N(t). he smooth version via kernel regularization is:
n
Relation to the ROC curve We ()= (do Fonn)(s(Xy)) (6)
i=1
The ROC curve as the graph of a cad-lag nondecreasing mapping: here B — (1/N <X W/ /N S v ) /h " " . (7
| where B,y (t) = (1/N) S0, (£ — s(X0))/h) + (1/N) S0 (2 — 5(Y,))/h) as the smooth version of F, x
ROC(s,.):a€e|0,1]]—»1—-Gs0H, (1 —a) . (1)
Ws-ranking performance criteria as summaries of the ROC curve: Gradient Ascent Algorithm and Experiments
1 [ 1—p [ : . —
Wy(s) = _/ o(u)du p/ ¢ (p(1 — ROC(s,a)) + (1 — p)(1 — @) do . (2) Algorithm 1: Gradient Ascent for smooth W criteria 10 .
P Jo P Jo maximization wrt parametric classes S)(O) .
Data: Independent i.i.d. samples {X;}i<,, and {Y;} ;<. | T Pats
Optima“ty Input: Score-generating function ¢, kernel K, bandwidth i > 0, o6 * e .‘
number of iterations T" > 1, step size n > 0. |
@ The optimal class maximizing Wy is: S* ={s* =T oWV | T : |0, 1] — R strictly increasing}. Result: Scoring rule 55 (2). 4]
@ Under the assumptions on ¢: Wy(s) < Wy(V) = Wy(s*) = W forany s € S, 5™ € §*. 1 Choose the initial point ) in ©; .
2fort=0,..., T"—1do j
] ) 3 | compute the gradient estimate Vy (/V[meh( 9<>)) ; 0.0 4 = — — — ; .|
Generalization Error Bound G o (T | | | | | |
4 | update the parameter """ = 0\ + 1V, (anh( >)) | Figure: ¢amw (w) = w in blue, ¢py(u) =’ in
[Cor. 7 in [3]]. Let 5 be an empirical W-ranking performance maximizer over the class Sy, i.e. § € argmax, g W¢ (). 5 end orange, ¢rrp(u) = ul{u > uy} in green,
Under the assumptions, for any d € (0, 1), there exist constants C, C5 > 0, Cy > 4 depending on ¢, V and C; > 0 6 Set 0, = 6. vertical line at = uy in black.
depending on ¢, we have with probability at least 1 — 0:
A log(C5/4)
W5 — Wy(s) < 2C5 N - | W5 — sup Wy(s) |, (3)
p $€S80 g, g,
as soon as C1/ min(1, \/p? N, \/p*(1 — p)N?3) < C34/log(C5/6) < Cy/pN min(1 — p,1/N). ;. s :
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Figure: Empirical and average ROC curves for the location model with X ~ Ny(ely, X)), Y ~ Ny(14,2) (e = 0.20) with linear S.
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