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Contributions

I Generalize univariate two-sample linear rank statistics to the multivariate setting with generic feature space.
I Provide nonasymptotic theoretical guarantees on this collection of statistics, defined as R-processes, when indexed by

classes of scoring functions.
I Apply to Bipartite Ranking by considering the R-processes as empirical performance criteria summarizing the ROC curve.

Notations and Framework

I Let p ∈ (0, 1) be the ’theoretical’ fraction of the first sample. For N ≥ 1/p, n = bpNc and m = d(1− p)Ne = N − n.
I Let two independent i.i.d. samples {Xi}i≤n, {Yj}j≤m, drawn from G(dt), H(dt) respectively, defined on the sample

probability space, valued in X , e.g. X ⊂ Rd, d ∈ N∗. Define the mixture c.d.f. by F = pG + (1− p)H.
I Let S = {s : X 7→ R measurable} be the class scoring functions that maps observations into R. Suppose S0 ⊂ S has

finite VC-dimension V .
I Let M > 0. For all s ∈ S0, the random variables s(X) and s(Y) are continuous, with density functions that are twice

differentiable and have Sobolev W2,∞-norms. The image distributions are denoted by Gs and Hs.
I Denote by Ψ the likelihood ratio defined by Ψ : x ∈ X 7→ dG/dH(x) .

Relation to the ROC curve

The ROC curve as the graph of a càd-làg nondecreasing mapping:

ROC(s, .) : α ∈ [0, 1] 7→ 1−Gs ◦H−1
s (1− α) . (1)

Wφ-ranking performance criteria as summaries of the ROC curve:

Wφ(s) =
1

p

∫ 1

0

φ(u)du− 1− p
p

∫ 1

0

φ (p(1− ROC(s, α)) + (1− p)(1− α)) dα . (2)

Optimality

1 The optimal class maximizing Wφ is: S∗ = {s∗ = T ◦ Ψ | T : [0, 1]→ R strictly increasing}.
2 Under the assumptions on φ: Wφ(s) ≤ Wφ(Ψ) = Wφ(s

∗) = W ∗
φ for any s ∈ S, s∗ ∈ S∗.

Generalization Error Bound

[Cor. 7 in [3]]. Let ŝ be an empirical Wφ-ranking performance maximizer over the class S0, i.e. ŝ ∈ argmaxs∈S0 Ŵ
φ
n,m(s).

Under the assumptions, for any δ ∈ (0, 1), there exist constants C1, C3 > 0, C2 ≥ 4 depending on φ, V and C4 > 0
depending on φ, we have with probability at least 1− δ:

W ∗
φ −Wφ(ŝ) ≤ 2C3

√
log(C2/δ)

pN
+

(
W ∗

φ − sup
s∈S0

Wφ(s)

)
, (3)

as soon as C1/min(1,
√
p3N,

√
p2(1− p)N 3) ≤ C3

√
log(C2/δ) ≤ C4

√
pN min(1− p, 1/N).
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Related work

I Linear rank statistics were initially introduced in semi/nonparametric univariate framework by [5], [4].
I First generalization of the univariate Mann-Whitney-Wilcoxon rank statistic applied to hypothesis testing in [2].
I Empirical risk minimization of bivariate loss function has been shown to be equivalent with empirical maximization of the
R-statistic associated with ([1]).

Definitions

The two-sample Wφ-ranking performance measure is defined by:

Wφ(s) = E[φ(Fs(s(X)))] , (4)

where we define by φ : [0, 1] 7→ R the score-generating function and suppose to be fixed, nondecreasing and twice
continuously differentiable. The empirical counterpart based on the two samples {Xi}i≤n, {Yj}j≤m is:

Ŵ φ
n,m(s) =

n∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (5)

where Rank(t) =
∑n

i=1 I{s(Xi) ≤ t} +
∑m

j=1 I{s(Yj) ≤ t} = NF̂s,N(t). The smooth version via kernel regularization is:

Ŵ φ
n,m,h(s) =

n∑
i=1

(φ ◦ F̂s,N,h)(s(Xi)) , (6)

where F̂s,N,h(t) = (1/N)
∑n

i=1 κ ((t− s(Xi))/h) + (1/N)
∑m

j=1 κ ((t− s(Yj))/h) as the smooth version of F̂s,N .

Gradient Ascent Algorithm and Experiments

Algorithm 1: Gradient Ascent for smooth Wφ criteria
maximization wrt parametric classes S0(Θ)

Data: Independent i.i.d. samples {Xi}i≤n and {Yj}j≤m.
Input: Score-generating function φ, kernel K, bandwidth h > 0,

number of iterations T ≥ 1, step size η > 0.
Result: Scoring rule sθ̂n,m(z).

1 Choose the initial point θ(0) in Θ;
2 for t = 0, . . . , T − 1 do
3 compute the gradient estimate ∇θ

(
Ŵ φ

n,m,h(sθ(t))
)

;

4 update the parameter θ(t+1) = θ(t) + η∇θ

(
Ŵ φ

n,m,h(sθ(t))
)

;

5 end
6 Set θ̂n,m = θ(T ).

Figure: φMWW (u) = u in blue, φPol(u) = u3 in
orange, φRTB(u) = uI{u ≥ u0} in green,
vertical line at x = u0 in black.
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Figure: Empirical and average ROC curves for the location model with X ∼ Nd(ε1d,Σ), Y ∼ Nd(1d,Σ) (ε = 0.20) with linear S0.
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