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We study the problem of sampling from a probability distribution on Rp defined via a convex and smooth potential function. We first consider a continuous‐time diffusion‐type process, termed Penalized Langevin dynamics (PLD), the drift of which is the
negative gradient of the potential plus a linear penalty that vanishes when time goes to infinity. An upper bound on the Wasserstein‐2 distance between the distribution of the PLD at time t and the target is established. This upper bound highlights the
influence of the speed of decay of the penalty on the accuracy of approximation. As a consequence, considering the low‐temperature limit we infer a new non‐asymptotic guarantee of convergence of the penalized gradient flow for the optimization
problem.

Introduction

Our goal is to sample from a given target distribution π defined on Rp with a
large value of p. The latter means, that for a given precision level ε, we want
to generate a random vector θ with values in Rp such that its distribution µ
satisfies

distance(µ, π) ≤ ε, (1)

for some probability measure distance.
Important particular case: π has a density (w.r.t. the Lebesgue measure) given
by

π(θ) ∝ exp(−f(θ)), (2)

with a ``potential'' f : Rp → R.

Notation

Main assumption A(m, M). We say that f satisfies A(m, M), if it is twice
differentiable and the following matrix inequalities are true:

m‐strong convexity: ∇2f(θ) ≽ mIp , with m ≥ 0;
(π is m‐strongly log‐concave)
M‐Lipschitz gradients: ∇2f(θ) ≼ MIp, with M > 0.

Wasserstein distance:

Wq(ν, ν ′) = inf
{
E[∥ϑ − ϑ′∥q

2]1/q : ϑ ∼ ν and ϑ′ ∼ ν ′
}

, (3)

where the infimum is over all joint distributions having ν and ν ′ as the first and
the second marginal distributions.

Langevin diffusion

Vanilla Langevin diffusion:

dLLD
t = −∇f(LLD

t )dt +
√

2dW t. (LD)

The solution of this equation is a Markov process having π as an invariant
distribution.
When the potential function f is m‐strongly convex, the Markov process is
ergodic and it converges to π exponentially (Villani 2008):

W2(νLD
t , π) ≤ e−mtW2(νLD

0 , π). (4)

In the non‐strongly convex case this classical result does not provide
convergence for LD.

LD + Poincaré inequality

Poincaré inequality: We say π satisfies the Poincaré inequality, if for ∀g ∈ L2(π)
locally‐Lipschitz, we have

varπ[g] ≤ CPEπ

[
∥∇g∥2

]
. (P)

Example: Log‐concave distributions satisfy this inequality. Furthermore, CP =
1/m, for m‐strongly log‐concave distributions.
Chewi et al (2020) have shown that if π satisfies (P), then

W 2
2 (µt, π) ≤ 2CPe

− 2t
CP χ2 (µ0∥π) . (5)

The convergence is exponential but the result is not explicit, as the Poincaré
constant is unknown. Kannan, Lovász and Simonovits (1995) conjectured that
CP is bounded universally in terms of the dimension p. Chen (2020) almost
proved it by showing that CP = O(po(1)), but the result remains asymptotic.

Penalized Langevin diffusion

We propose to modify the Langevin equation by adding a vanishing linear
penalty:

dLPLD
t = −

(
∇f(LPLD

t ) + α(t)LPLD
t

)
dt +

√
2 dW t, (6)

where α : [0, ∞) → [0, ∞) is a positive time‐dependent penalty factor
converging to zero as t → ∞. The idea is to have aα(t)‐strongly convex potential
function f(·) + α(t)∥ · ∥2/2, for every fixed time instant t.

Main theorem

Theorem. Suppose f satisfies A(0, M). Then, for every positive number t
and for β(t) =

∫ t
0 α(u) du, we have

W2(νPLD
t , π) ≤ √

µ2 e−β(t) + 11µ2e
−β(t)

∫ t

0

|α′(s)|eβ(s)√
α(s)

ds +
√

α(t)µ2,

where µ2 = Eπ[∥ϑ∥2].

Remarks:

We obtain polynomial convergence.
The result only depends on the second order moment.
The almost optimal upper bound that this result can provide, is obtained
when α(t) = O(1/(µ2 + t)). In this case,

W2(νPLD
t , π) ≤

10µ2
[
1 + log

(
1 + (t/µ2)

)]
√

t + µ2
. (7)

Kinetic Langevin diffusion

Kinetic Langevin diffusion is a system of two SDEs and it is the origin of LD. It
was first proposed to model the movement of a particle in an environment with
friction.

dLKLD
t = V KLD

t dt;
dV KLD

t = −(ηV KLD
t + ∇f(LKLD

t ))dt +
√

2ηdW t.

Here Wt is a Brownian motion and η is the friction parameter. LD is the limit
of the rescaled kinetic diffusion L̄t = LKLD

ηt when the friction coefficient η
tends to infinity (Nelson et al, '65).
The Markov process (LKLD

t ; V KLD
t ) is positive recurrent and its invariant

distribution is absolutely continuous w.r.t. the Lebesgue measure on R2p.
The corresponding invariant density is

p∗(θ, v) ∝ exp(−f(θ) − ∥v∥2
2/2). (8)

Mixing‐time in Wasserstein distance is of order exp(−t/κ), with κ = M/m.
(Eberle et al., 2017)

Penalized Kinetic Langevin diffusion

Similar to the Vanilla Langevin diffusion, the Kinetic Langevin diffusion also
encounters the issue of convergence in the non‐strongly convex case. We
propose to use the same penalization for KLD, which results the following system
of SDEs:

dLPKLD
t = V PKLD

t dt;
dV PKLD

t = −(ηV PKLD
t + ∇f(LPKLD

t ) + α(t)LPKLD
t )dt +

√
2ηdW t.

Remark. We prove that PKLD converges to the target distribution π with
Õ(1/

√
µ2 + t) rate.

Contributions and future work

Our main contributions can be summarized as follows:

We propose a general penalization method that can be applied to LD, KLD
and many other SDEs. In particular, for LD and KLD we prove explicit
non‐asymptotic upper bounds for the Wasserstein‐2 error.

In the paper, we also analyze the analogical problem of gradient flows.
Leveraging the similarity of the sampling and optimization problems, we
prove the convergence of the gradient flow to the minimum point of f under
some technical assumptions.


