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OUTLINE OF THE TALK

1. What is Federated Learning?

2. A baseline algorithm: FedAvg

3. Challenge 1: Dealing with non-IID data

Zoom on learning personalized models via task relationships

4. Challenge 2: Preserving privacy

Zoom on an accurate and scalable protocol for private aggregation

5. Wrapping up
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WHAT IS FEDERATED LEARNING?



(SUPERVISED) MACHINE LEARNING
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A SHIFT OF PARADIGM: FROM CENTRALIZED TO DECENTRALIZED DATA

• The standard setting in Machine Learning (ML) considers a centralized dataset
processed in a tightly integrated system

• But in the real world data is often decentralized across many parties

data center

≠
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WHY CAN’T WE JUST CENTRALIZE THE DATA?

1. Sending the data may be too costly

• Self-driving cars are expected to generate several TBs of data a day

• Some wireless devices have limited bandwidth/power

2. Data may be considered too sensitive

• We see a growing public awareness and regulations on data privacy

• Keeping control of data can give a competitive advantage in business and research
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HOW ABOUT EACH PARTY LEARNING ON ITS OWN?

1. The local dataset may be too small
• Sub-par predictive performance (e.g., due to overfitting)
• Non-statistically significant results (e.g., medical studies)

2. The local dataset may be biased
• Not representative of the target distribution
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) aims to collaboratively train a ML model while keeping the
data decentralized

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) aims to collaboratively train a ML model while keeping the
data decentralized

initialize model

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) aims to collaboratively train a ML model while keeping the
data decentralized

each party makes an update
using its local dataset

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) aims to collaboratively train a ML model while keeping the
data decentralized

parties share local
updates for aggregation

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) aims to collaboratively train a ML model while keeping the
data decentralized

server aggregates updates
and sends back to parties

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) aims to collaboratively train a ML model while keeping the
data decentralized

parties update their copy
of the model and iterate

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own 6



KEY DIFFERENCES WITH DISTRIBUTED LEARNING

Data distribution

• In distributed learning, data is centrally stored (e.g., in a data center)
• The main goal is just to train faster
• We control how data is distributed across workers: usually, it is distributed uniformly at
random across workers

• In FL, data is naturally distributed and generated locally
• Data is not independent and identically distributed (non-IID), and it is imbalanced

Additional challenges that arise in FL
• Dealing with the possibly limited reliability/availability of participants
• Enforcing privacy constraints
• Achieving robustness against malicious parties
• ...
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CROSS-DEVICE VS. CROSS-SILO FL

Cross-device FL

• Massive number of parties (up to 1010)

• Small dataset per party (could be size 1)

• Limited availability and reliability

• Some parties may be malicious

Cross-silo FL

• 2-100 parties

• Medium to large dataset per party

• Reliable parties, almost always available

• Parties are typically honest
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SERVER ORCHESTRATED VS. FULLY DECENTRALIZED FL

Server-orchestrated FL

• Server-client communication

• Global coordination, global aggregation

• Server is a single point of failure and
may become a bottleneck

Fully decentralized FL

• Device-to-device communication

• No global coordination, local aggregation

• Naturally scales to a large number of
devices
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FEDERATED LEARNING IS A BOOMING TOPIC

• 2016: the term FL is first coined by Google researchers; 2020: more than 1,000 papers
on FL in the first half of the year (compared to just 180 in 2018)1

• We have already seen some real-world deployments by companies and researchers

• Several open-source libraries are under development: PySyft, TensorFlow Federated,
FATE, Flower, Substra...

• FL is highly multidisciplinary: it involves machine learning, numerical optimization,
privacy & security, networks, systems, hardware...

This is all a bit hard to keep up with!

1https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/

10

https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/


A BASELINE ALGORITHM: FEDAVG



BASIC NOTATIONS

• We consider a set of K parties (also called users or clients)

• Each party k holds a dataset Dk of nk points

• Let D = D1 ∪ · · · ∪ DK be the joint dataset and n =
∑

k nk the total number of points

• We want to solve problems of the form minθ∈Rp F(θ;D) where:

F(θ;D) =
K∑

k=1

nk
n Fk(θ;Dk) and Fk(θ;Dk) =

1
nk

∑
d∈Dk

f(θ;d)

• θ ∈ Rp are model parameters (e.g., weights of a logistic regression or neural network)

• This covers a broad class of ML problems formulated as empirical risk minimization
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FEDAVG (AKA LOCAL SGD) [MCMAHAN ET AL., 2017]

Algorithm FedAvg (server-side)
Parameters: client sampling rate ρ

initialize θ

for each round t = 0, 1, . . . do
St ← random set of m = dρKe clients
for each client k ∈ St in parallel do
θk ← ClientUpdate(k, θ)

θ ←
∑

k∈St
nk
n θk

Algorithm ClientUpdate(k, θ)
Parameters: batch size B, number of local
steps L, learning rate η
for each local step 1, . . . , L do
B ← mini-batch of B examples from Dk
θ ← θ − 1

Bη
∑

d∈B∇f(θ;d)
send θ to server

• For L = 1 and ρ = 1, it is equivalent to classic parallel SGD: updates are aggregated
and the model synchronized at each step

• For L > 1: each client performs multiple local SGD steps before communicating
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FEDAVG (AKA LOCAL SGD) [MCMAHAN ET AL., 2017]

• FedAvg with L > 1 allows to reduce the number of communication rounds, which is
often the bottleneck in FL (especially in the cross-device setting)

• It empirically achieves better generalization than parallel SGD with large mini-batch

• Convergence to the optimal model can be guaranteed for IID data [Stich, 2019]
[Woodworth et al., 2020] but issues arise in strongly non-IID case (more on this later) 13



FULLY DECENTRALIZED SETTING

• We can derive algorithms similar to FedAvg for the fully decentralized setting, where
parties do not rely on a server for aggregating updates

• Let G = ({1, . . . , K}, E) be a connected undirected graph where nodes are parties and
an edge {k, l} ∈ E indicates that k and l can exchange messages

• Let W ∈ [0, 1]K×K be a symmetric, doubly stochastic matrix such that Wk,l = 0 if and
only if {k, l} /∈ E

• Given models Θ = [θ1, . . . , θK] for each party, WΘ corresponds to a weighted
aggregation among neighboring nodes in G:

[WΘ]k =
∑
l∈Nk

Wk,lθl, where Nk = {l : {k, l} ∈ E}
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FULLY DECENTRALIZED (LOCAL) SGD [LIAN ET AL., 2017, KOLOSKOVA ET AL., 2020B]

Algorithm Fully decentralized SGD (run by party k)
Parameters: batch size B, learning rate η, sequence of matricesW(t)

initialize θ
(0)
k

for each round t = 0, 1, . . . do
B ← mini-batch of B examples from Dk

θ
(t+ 1

2 )

k ← θ
(t)
k −

1
Bη

∑
d∈B∇f(θ

(t)
k ;d)

θ
(t+1)
k ←

∑
l∈N (t)

k
W(t)

k,lθ
(t+ 1

2 )

l

• Decentralized SGD alternates between local updates and local aggregation

• Doing multiple local steps is equivalent to choosing W(t) = In in some of the rounds

• The convergence rate depends on the topology (the more connected, the faster)
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CHALLENGE 1: DEALING WITH
NON-IID DATA



CLIENT DRIFT IN FEDAVG

(Figure taken from [Karimireddy et al., 2020])

• When local datasets are non-IID, FedAvg suffers from client drift

• To avoid this drift, one must use fewer local updates and/or smaller learning rates,
which hurts convergence
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THEORETICAL CONVERGENCE RATES FOR FEDAVG

• Analyzing the convergence rate of FL algorithms on non-IID data involves some
assumption about how the local cost functions F1, . . . , Fk are related

• For instance, one can assume that there exists constants G ≥ 0 and B ≥ 1 such that

∀θ :
1
K

K∑
k=1

‖∇Fk(θ;Dk)‖2 ≤ G2 + B2‖∇F(θ;D)‖2

• FedAvg without client sampling reaches ϵ accuracy with O( 1
KLϵ2 +

G
ϵ3/2

+ B2

ϵ ), which is
slower than the O( 1

KLϵ2 +
1
ϵ ) of parallel SGD with large batch [Karimireddy et al., 2020]
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SCAFFOLD: CORRECTING LOCAL UPDATES [KARIMIREDDY ET AL., 2020]

Algorithm Scaffold (server-side)
Parameters: client sampling rate ρ, global
learning rate ηg

initialize θ, c = c1, . . . , cK = 0
for each round t = 0, 1, . . . do
St ← random set of m = dρKe clients
for each client k ∈ St in parallel do
(∆θk,∆ck)← ClientUpdate (k, θ,c)

θ ← θ +
ηg
m
∑

k∈St
∆θk

c← c+ 1
K
∑

k∈St
∆ck

Algorithm ClientUpdate(k, θ, c)
Parameters: batch size B, # of local steps L,
local learning rate ηl

Initialize θk ← θ

for each local step 1, . . . , L do
B ← mini-batch of B examples from Dk
θk ← θk − ηl(

1
B
∑

d∈B∇f(θ;d)− ck + c)
c+k ← ck − c+ 1

Lηl
(θ − θk)

send (θk − θ, c+k − ck) to server
ck ← c+k

• Correction terms c1, . . . , cK are a form of variance reduction (cf Aymeric’s tutorial)

• Can show convergence rates which beat parallel SGD
18



SCAFFOLD: CORRECTING LOCAL UPDATES [KARIMIREDDY ET AL., 2020]

• FedAvg becomes slower than parallel SGD for strongly non-IID data (large G)

• Scaffold can often do better in such settings

• Other relevant approach: FedProx [Li et al., 2020b]
19



FEDERATED LEARNING OF PERSONALIZED MODELS

• Learning from non-IID data is difficult/slow because each party wants the model to
go in a particular direction

• If data distributions are very different, learning a single model which performs well
for all parties may require a very large number of parameters

• Another direction to deal with non-IID data is thus to lift the requirement that the
learned model should be the same for all parties (“one size fits all”)

• Instead, we can allow each party k to learn a (potentially simpler) personalized
model θk but design the objective so as to enforce some kind of collaboration
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PERSONALIZED MODELS FROM A “META” MODEL

• [Hanzely et al., 2020] propose to regularize personalized models to their mean:

F(θ1, . . . , θK;D) =
1
K

K∑
k=1

Fk(θk;Dk) +
λ

2K

K∑
k=1

∥∥∥θk − 1
K

K∑
l=1

θl

∥∥∥2
• Inspired by meta-learning, [Fallah et al., 2020] propose to learn a global model which
easily adapts to each party:

F(θ;D) = 1
K

K∑
k=1

Fk(θ − α∇Fk(θ);Dk)

• These formulations are actually related to each other (and to the FedAvg algorithm)

• Other formulations exist, see e.g., the bilevel approach of [Dinh et al., 2020]
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CHALLENGE 1: DEALING WITH
NON-IID DATA

ZOOM ON LEARNING PERSONALIZED MODELS
VIA TASK RELATIONSHIPS



PERSONALIZED MODELS VIA TASK RELATIONSHIPS

• Inspired by multi-task learning, [Smith et al., 2017, Vanhaesebrouck et al., 2017] propose to
regularize personalized models using (learned) relationships between tasks

• Learn personalized models Θ ∈ RK×p and graph weights w ∈ RK(K−1)/2
≥0 as solutions to

min
Θ∈RK×p,w∈RK(K−1)/2

≥0

J(Θ,w) =
K∑

k=1

dkckFk(θk;Dk) +
µ

2
∑
k<l

wkl‖θk − θl‖2 + λg(w),

• Trade-off between learning accurate models on local data and learning similar
models for similar parties

• ck ∈ (0, 1] ∝ nk/n: confidence of party k, dk =
∑

l̸=k wkl: degree of k

• Graph regularizer g(w): avoid trivial graph, encourage sparsity

• Flexible relationships: hyperparameter µ ≥ 0 interpolates between learning purely
local models and a shared model per connected component
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ALGORITHM BASED ON ALTERNATING OPTIMIZATION

We design an alternating optimization procedure over Θ and w:

1. A federated algorithm to learn the models given the graph

2. A federated algorithm to learn a graph given the models
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FULLY DECENTRALIZED SETTING

• Asynchronous time model: each party becomes active at random times,
asynchronously and in parallel (we use global counter t to denote the t-th activation)

• Communication model: all parties can exchange messages, but we want to restrict
communication to pairs of most similar parties

• We use the (current) relationship graph as a communication overlay: party k only
send messages to her neighbors N (k) = {l : wkl > 0}
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LEARNING THE MODELS GIVEN THE GRAPH

• Initialize models Θ(0) ∈ RK×p, choose learning rate α ∈ (0, 1)

• At step t ≥ 0, a random party k becomes active:
1. party k updates its model based on its local dataset Dk and neighbors’ models:

θk(t+ 1) = (1− α)θk(t) + α
( ∑
l∈N (k)

wkl

dk
θl(t)−

ck
µ
∇Fk(θk(t);Dk)

)
2. party k sends its updated model θk(t+ 1) to its neighborhood N (k)

• The update is a combination of a local gradient descent step and a weighted average
of neighbors’ models
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LEARNING THE MODELS GIVEN THE GRAPH

Proposition ([Bellet et al., 2018])
For any T > 0, let (Θ(t))Tt=1 be the sequence of iterates generated by the algorithm
running for T iterations from an initial point Θ(0). When the local losses F1, . . . , FK are
strongly convex, for appropriate choice of α, we have:

E [f(Θ(T))− f⋆] ≤
(
1− σ

KLmax

)T
(f(Θ(0))− f∗) .

where Lmax and σ are global smoothness and strong convexity parameters.

• Optimality gap decreases exponentially fast with T
• Constant number of per-party updates→ optimality gap roughly constant in K
• Note: can prove O(1/T) convergence for the standard convex case
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CHOICE OF GRAPH REGULARIZER

min
Θ∈RK×p,w∈RK(K−1)/2

≥0

J(Θ,w) =
K∑

k=1

dkckFk(θk;Dk) +
µ

2
∑
k<l

wkl‖θk − θl‖2 + λg(w),

• Our algorithm can deal with a large family of functions g

• Inspired by [Kalofolias, 2016], we can use

g(w) = β‖w‖2 − 1T log(d+ δ) (with δ small constant)

• Log barrier on the degree vector d to avoid isolated parties and L2 penalty on
weights to control the graph sparsity

• The resulting objective h in w is strongly convex
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LEARNING THE GRAPH GIVEN THE MODELS

• We rely on decentralized peer sampling [Jelasity et al., 2007] to allow parties to
communicate with a set of κ random peers

• Initialize weights w(0), choose parameter κ ∈ {1, . . . , K− 1}

• At each step t ≥ 0, a random party k becomes active:
1. Draw a set K of κ parties and request their model, loss and degree
2. Update the associated weights w(t+ 1)k,K via a gradient update
3. Send each updated weight w(t+ 1)kl to the associated party l ∈ K
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LEARNING THE GRAPH GIVEN THE MODELS

Theorem ([Zantedeschi et al., 2020])
For any T > 0, let (w(t))Tt=1 be the sequence of iterates generated by the algorithm
running for T iterations from an initial point w(0). We have:

E[h(w(T))− h∗] ≤ ρT(h(w(0))− h∗), where ρ = 1− 4
K(K− 1)

κβδ2

κ+ 1+ 2βδ2

• κ can be used to trade-off between communication cost and convergence speed
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EXTENSION: LEARNING PERSONALIZED ENSEMBLES [ZANTEDESCHI ET AL., 2020]

• Consider a set of base models h1, . . . ,hM (e.g., pre-trained on proxy data)

• Find personalized ensemble models x 7→ sign(
∑M

m=1[θk]mhm(x)) as solutions to:

min
∥θ1∥1≤β,...,∥θK∥1≤β

w∈RK(K−1)/2
≥0

K∑
k=1

dkcklog
( nk∑

l=1

exp
(
− (Akθk)l

))
︸ ︷︷ ︸

Fk(θk;Dk)

+
µ

2
∑
k<l

wkl‖θk − θl‖2 + λg(w)

• Ak ∈ Rnk×M: margins of base models on each data point of party k

• Can design algorithm with communication cost logarithmic in K
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ILLUSTRATION ON SYNTHETIC DATA

• We approximately recover the ground-truth cluster structure

• Prediction accuracy is close to that of the “oracle” graph

Oracle Graph

Learned Graph
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CHALLENGE 2: PRESERVING PRIVACY



PRIVACY ISSUES IN (FEDERATED) ML

• ML models are susceptible to various attacks on data privacy

• Membership inference attacks try to infer the presence of a known individual in the
training set, e.g., by exploiting the confidence in model predictions [Shokri et al., 2017]

• Reconstruction attacks try to infer some of the points used to train the model, e.g.,
by differencing attacks [Paige et al., 2020]

• Federated Learning offers an additional attack surface because the server and/or
other clients observe model updates (not only the final model) [Nasr et al., 2019]
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DIFFERENTIAL PRIVACY

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

x2'

• Neighboring datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn}

• Requirement: A(D) and A(D′) should have “close” distribution

output range of A

p
ro

b
a
b
ili

ty ratio
bounded
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DIFFERENTIAL PRIVACY

Definition ([Dwork et al., 2006], informal)
A randomized algorithm A is (ε, δ)-differentially private (DP) if for all neighboring
datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn} and all sets S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

• First proposed in [Dwork et al., 2006] (who won the Gödel prize in 2017)

• Key principle: privacy is a property of the analysis, not of a particular output (in
contrast to e.g., k-anonymity)

• For meaningful privacy guarantees, think of ε ≤ 1 and δ � 1/n
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KEY PROPERTIES OF DIFFERENTIAL PRIVACY

• DP is immune to post-processing: it is impossible to compute a function of the
output of the private algorithm and make it less differentially private

• DP is robust to arbitrary auxiliary knowledge (worst-case model): the guarantee is
just as strong if the adversary knows all but one record and regardless of the
adversary strategy and computational power

• DP is robust under composition: if multiple analyses are performed on the same
data, as long as each one satisfies DP, all the information released taken together
will still satisfy DP (albeit with a degradation in the parameters)
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ENFORCING DP WITH THE GAUSSIAN MECHANISM

• Consider f taking as input a dataset and returning a p-dimensional real vector

Gaussian mechanism AGauss(D, f, ϵ, δ)

1. Compute sensitivity ∆ = max(D,D′) are neighboring ‖f(D)− f(D′)‖2

2. For i = 1, . . . ,p: draw Yi ∼ N (0, σ2) independently for each i, where σ =

√
2 ln(1.25/δ)∆

ε

3. Output f(D) + Y, where Y = (Y1, . . . , Yp) ∈ Rp

Theorem
Let ε, δ > 0. The Gaussian mechanism AGauss(·, f, ε, δ) is (ϵ, δ)-DP.

• Noise calibrated using sensitivity of f and privacy budget (ε and δ)

• Induces a clear privacy-utility trade-off
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TWO SETTINGS FOR DP: CENTRALIZED VS DECENTRALIZED

Centralized setting (also called global
setting or trusted curator setting): A is
differentially private wrt dataset D

Individuals
(or organizations)

... A

Trusted
curator

A(D)

x1

x2

xn

Decentralized/federated setting (also
called local setting or untrusted cura-
tor setting): each Rk is DP wrt record
xk (or local dataset Dk)

Individuals
(or organizations)

... A

Untrusted
curator

A(Y)

x1

x2

xn

R1

R2

Rn

y1

y2

yn
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A KEY FUNCTIONALITY: DP AGGREGATION

• Most (server-orchestrated) FL algorithms follow the same high-level pattern:

for t = 1 to T do
At each party k: compute θk ← LOCALUPDATE(θ, θk), send θk to server
At server: compute θ ← 1

K
∑

k θk, send θ back to the parties

• Therefore:

DP aggregation + Composition property of DP =⇒ DP-FL

• Differentially private aggregation: given a private value θk ∈ R (computed from Dk)
for each party k, we want to accurately estimate θavg = 1

K
∑

k θk under a DP constraint
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EXISTING APPROACHES TO DP AGGREGATION

• Centralized setting: trusted curator adds (Gaussian) noise to the average θavg

• Decentralized setting: each party k adds noise to its own value θk before sharing it

• For a fixed DP guarantee, the error is O(
√
K) larger in the decentralized case!

• Cryptographic primitives such as secure aggregation [Bonawitz et al., 2017] and secure
shuffling [Balle et al., 2019] can be used to close this gap

• However their practical implementation poses important challenges when K is large
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CHALLENGE 2: PRESERVING PRIVACY

ZOOM ON AN ACCURATE AND SCALABLE
PROTOCOL FOR PRIVATE AGGREGATION



GOPA PROTOCOL [SABATER ET AL., 2020]

Algorithm GOPA protocol
Parameters: graph G, variances σ2

∆, σ
2
η ∈ R+

for all neighboring parties {k, l} in G do
k and l draw y ∼ N (0, σ2

∆)

set ∆k,l ← y, ∆l,k ← −y
for each party k do
k draws ηk ∼ N (0, σ2

η)

k reveals θ̂k ← θk +
∑

l∼k ∆k,l + ηk

1. Neighbors {k, l} in G securely exchange
pairwise-canceling Gaussian noise

2. Each party k generate independent
Gaussian noise

3. Party k reveals the sum of private value,
pairwise and independent noise terms

• Unbiased estimate of the average: θ̂avg = 1
K
∑

k θ̂k, with variance σ2
η/K

40



PRIVACY GUARANTEES FOR GOPA: GENERAL RESULT

• Adversary: proportion 1− ρ of colluding malicious parties who observe all
communications they take part in

• Denote by UH the set of honest-but-curious parties, and by GH the honest subgraph

• GOPA can achieve (ϵ, δ)-DP for any ϵ, δ > 0 for connected GH and large enough σ2
η, σ

2
∆

• We show that σ2
η can be as small as in the centralized setting (matching its utility)

• We show that the required σ2
∆ depends on the topology of GH
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PRIVACY GUARANTEES FOR GOPA: PRACTICAL RESULT

Theorem (Case of random k-out graph)
Let ϵ, δ′ ∈ (0, 1) and let:

• G be obtained by letting all parties randomly choose m = O(log(ρn)/ρ) neighbors
• σ2

η so as to satisfy (ϵ, δ)-DP in the centralized (trusted curator) setting
• σ2

∆ = O(σ2
η|UH|/m)

Then GOPA is (ϵ, δ)-differentially private for δ = O(δ′).

• Trusted curator utility with logarithmic number of messages per party

• Our theoretical results give practical values for m and σ2
∆
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ENSURING CORRECTNESS

• Utility can be compromised by malicious parties tampering with the protocol (e.g.,
sending incorrect values to bias the outcome)

• It is impossible to force a party k to give the “right” input θk (this also holds in the
trusted curator setting)

• We enable each party k to prove the following properties:

θk ∈ [0, 1], ∀k ∈ {1, . . . , K}
∆k,l = −∆l,k, ∀{k, l} neighbors in G

ηk ∼ N (0, σ2
η), ∀k ∈ {1, . . . , K}

θ̂k = θk +
∑
l∼k

∆k,l + ηk, ∀k ∈ {1, . . . , K}
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ENSURING CORRECTNESS

• Parties publish an encrypted log of the computation using Pedersen commitments
[Blum, 1983, Pedersen, 1991], which are additively homomorphic

• Based on these commitments, parties prove that the computation was done
correctly using zero knowledge proofs

Theorem (Informal)
A party k that passes the verification proves that θ̂k was computed correctly.
Additionally, by doing so, k does not reveal any additional information about θk.

• Costs per party remain linear in the number of neighbors

• Can prove consistency across multiple runs on same/similar data

• Can handle drop out
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WRAPPING UP



SOME OTHER INTERESTING TOPICS IN FL

• Going beyond empirical risk minimization formulations: tree-based methods
[Li et al., 2020a], online learning [Dubey and Pentland, 2020], Bayesian learning...

• Vertical data partitioning, where parties have access to different features about the
same examples [Patrini et al., 2016]

• Compressing updates to reduce communication [Koloskova et al., 2020a]

• Fairness in FL [Mohri et al., 2020, Li et al., 2020c, Laguel et al., 2020]

• Security in FL: how to mitigate poisoning attacks [Bagdasaryan et al., 2020]
[Blanchard et al., 2017]
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KEEPING UP WITH ADVANCES IN FEDERATED LEARNING

Survey paper: Advances and Open Problems in FL [Kairouz et al., 2021]

• A large collaborative effort (50+ authors!)

• Updated in December 2020, to appear in FnTML 2021

Online seminar: Federated Learning One World (FLOW)
https://sites.google.com/view/one-world-seminar-series-flow/

• Co-organized with D. Alistarh, V. Smith and P. Richtárik, started in May 2020

• Weekly talks (usually on Wednesdays, 1pm UTC) covering all aspects of FL

• The videos and slides of all previous talks are available online
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BONUS 1: PRIVATE LEARNING OF PERSONALIZED MODELS



PRIVACY MODEL

• In our algorithms, parties never communicate their local data but they exchange
sequences of models computed from data

• We consider an adversary observing all the information sent over the network (but
not the internal memory of parties)

• Goal: modify algorithm to satisfy differential privacy
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DIFFERENTIALLY PRIVATE ALGORITHM

1. Replace the update of the algorithm for learning personalized models by

θ̃k(t+ 1) = (1− α)θ̃k(t) + α
(∑

l∈Nk

wkl
dk

θ̃l(t)−
ck
µ

(
∇Fk(θ̃k(t);Dk) + ηk(t)

))
,

where ηk ∼ Laplace(0, si)p ∈ Rp

2. Party k then broadcasts noisy iterate θ̃k(t+ 1) to its neighbors
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PRIVACY GUARANTEE

Theorem ([Bellet et al., 2018])
Let k ∈ {1, . . . , K} and assume

• The loss function is L0-Lipschitz w.r.t. the L1-norm for all data points
• Party k wakes up Tk times and use noise scale sk = L0

ϵknk
• Algorithm Ak(Dk): releases the sequence of party k’s models

For any Θ̃(0) independent of Dk, Ak(Dk) is ϵ̄k-DP with ϵ̄k = Tkϵk.

• Follows from (L1) sensitivity analysis of the update and Laplace mechanism
• Can be improved by strong composition [Kairouz et al., 2015]
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PRIVACY/UTILITY TRADE-OFF

Theorem ([Bellet et al., 2018])
For any T > 0, let (Θ(t))Tt=1 be the sequence of iterates generated by T iterations. For
σ-strongly convex f, we have:

E
[
f(Θ̃(T))− f⋆

]
≤
(
1− σ

nLmax

)T (
f(Θ̃(0))− f⋆

)
+

1
KLmin

T−1∑
t=0

K∑
k=1

(
1− σ

KLmax

)t[
dkcksk(t)

]2
,

where Lmin and Lmax are smoothness parameters.

• Parties with less data add more noise but their contribution to the error is smaller
• T rules a trade-off between optimization error and noise error
• A good (differentially private) warm start can help a lot
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BONUS 2: PRIVACY BENEFITS OF FULL DECENTRALIZATION



PRIVACY BENEFITS OF FULL DECENTRALIZATION [CYFFERS AND BELLET, 2020]

• In the fully decentralized case, each party has a limited view of the system

• Can this be used to prove stronger differential privacy guarantees?
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PRIVACY BENEFITS OF FULL DECENTRALIZATION [CYFFERS AND BELLET, 2020]

• Consider algorithms that sequentially update the estimate (e.g., ML model) by
following a walk over the network graph [Ram et al., 2009, Mao et al., 2020]

• We have shown that for some topologies (directed ring, complete graph), such
algorithms can match the privacy-utility trade-off of the centralized setting

• Analysis relies on recent privacy amplification results [Balle et al., 2018]
[Erlingsson et al., 2019, Feldman et al., 2018]
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